The role of bay breezes on a high surface ozone episode during the Houston, Texas DISCOVER-AQ field campaign

Christopher P. Loughner (University of Maryland)
Melanie B. Follette-Cook (Morgan State University)
Alan Fried (University of Colorado)
Ken Pickering (NASA GSFC)
Rob Gilliam (EPA)
Jim MacKay (Texas Commission on Environmental Quality)

IWAQFR September 3, 2015

Funded by: NASA DISCOVER-AQ and Texas AQRP

Introduction

 High air pollution event occurred on September 25, 2013 during the DISCOVER-AQ Houston, Texas field deployment.

- Sea and bay breezes took place during this event.
- Possible over-assisted flaring events from petrochemical facilities observed during this event.

DISCOVER-AQ (Deriving Information on Surface conditions from Column and VERtically resolved observations relevant to Air Quality)

- Houston deployment: September 2013
- 9 flight days conducting spirals and missed approaches throughout the Houston metropolitan area.
- Numerous other ground-based measurements (Pandora UV/Vis spectrometers, AERONET sunphotometers, in-situ stationary and mobile platforms, ozonesondes, and tethersondes).

Daily 1-Hour Max Ozone (ppbv) – All Stations

Daily 1-Hour Max Ozone (ppbv)

bay, sea breezes following cold front

- Onshore flow during most of the campaign
- September 25 was the exception
 - Northerly transport into Houston
 - Sea and bay breezes caused pollutants to recirculate
 - Peak surface ozone near Galveston Bay
 - 1 hour max: 151 ppbv
 - 8 hour max: 124 ppbv

WRF/CMAQ Domains

Weather Research and Forecasting (WRF) Version 3.6.1 Model Options				
Radiation	LW: RRTM; SW: Goddard			
Surface Layer	Pleim-Xiu			
Land Surface Model	Pleim-Xiu			
Boundary Layer	ACM2			
Cumulus	Kain-Fritsch			
Microphysics	WSM-6			
Nudging	Observational and analysis nudging			
Damping	Vertical velocity and gravity waves damped at top of modeling domain			
SSTs	Multi-scale Ultra-high Resolution (MUR) SST analysis (~1 km resolution)			
CMAQ Version 5.0.2 Model Options				
Chemical Mechanism	CB05			
Aerosols	AE5			
Dry deposition	M3DRY			
Vertical diffusion	ACM2			
Emissions	2012 TCEQ anthropogenic emissions BEIS calculated within CMAQ			
Initial and Boundary conditions	MOZART CTM			

WRF simulations

- Time period:
 - 18 August 2 October, 2013
- Original simulation (4 km domain only)
 - Initial and boundary conditions 40 km NARR
 - WRF reinitialized every three days
 - Run in 3.5 day increments, with the first 12 hours discarded
 - Observational and analysis nudging on 36 km domain only

Output saved hourly

- WRF simulated weaker sea and bay breezes than observed
- Model biased low for surface ozone

WRF simulations

- Time period:
 - 18 August 2 October, 2013
- Original simulation (4 km domain only)
 - Initial and boundary conditions 40 km NARR
 - WRF reinitialized every three days
 - Run in 3.5 day increments, with the first 12 hours discarded
 - Observational and analysis nudging on 36 km domain only
 - Output saved hourly
- Iterative runs (EPA Method) (4 km and 1 km domains)
 - Initial and boundary conditions 12 km NAM
 - Observational nudging of all domains
 - 1 km nonpoint emissions interpolated from 4 km emissions
 - Output saved every 20 minutes (4 km) and 5 minutes (1 km)
 - Iteration #1
 - Analysis nudging on all domains based on 12 km NAM
 - Iteration #2
 - 4 and 1 km domains: analysis nudging of 2 m temperature and humidity from previous WRF run, everything else from 12 km NAM

September 25

2013-09-25 12 Z _iter2

6 am CST:

Observations – calm winds

Model – weak northwesterly transport into Houston

September 25

2013-09-25 12 Z _iter2

2013-09-25 21 Z iter2

6 am CST:

Observations – calm winds

Model – weak northwesterly transport into Houston

3 pm CST:

Sea and bay breezes pushing inland along Gulf of Mexico shoreline and western coastline of Galveston Bay.

September 25

Temperature (K)

Model evaluation

- Meteorology statistics highlight:
 - Poor performance of original 4 km simulation
 - 2nd iterative WRF run is necessary for 1 km horizontal resolution
- Surface ozone statistics highlight:
 - Poor performance of original 4 km simulation
 - Similar surface ozone results between improved 4 and 1 km CMAQ simulations

Sep 24-26	10 m Wind Direction (deg)				
	Orig (4km)	Iter 1 (4 km)	Iter 1 (1 km)	Iter 2 (4 km)	Iter 2 (1 km)
MB	56	37	70	38	38
NMB	39	26	49	26	26
NME	39	26	49	26	26
RMSE	73	55	88	56	55

Sep 24-26	Surface Ozone (ppbv)				
	Orig (4km)	Iter 2 (4 km)	Iter 2 (1 km)		
MB	4.9	2.1	2.9		
NMB	15	6.4	8.9		
NME	41	29	29		
RMSE	17	13	12		

Conclusions

- Improved WRF model run accurately captured the representation of sea and bay breezes. Sea and bay breeze circulations caused pollutants to re-circulate in the area leading to unhealthy air.
- Missing emissions in the inventory, possibly from over-assisted flaring events, resulted in model low bias in surface ozone. However, CMAQ still simulated widespread exceedances of the 8 hour ozone standard indicating over-assisted flaring events made a bad air pollution event worse.
- Improvements in emissions estimates are underway and should lead to improvements in model simulated ozone concentrations.
- Lack of halogen chemistry in CMAQ may be cause of model high ozone bias along Gulf of Mexico coastline. Next release of CMAQ will include halogen chemistry.